A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit
نویسندگان
چکیده
منابع مشابه
A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit
We consider the block orthogonal multi-matching pursuit (BOMMP) algorithm for the recovery of block sparse signals. A sharp bound is obtained for the exact reconstruction of block K-sparse signals via the BOMMP algorithm in the noiseless case, based on the block restricted isometry constant (block-RIC). Moreover, we show that the sharp bound combining with an extra condition on the minimum l2 n...
متن کاملSharp Sufficient Conditions for Stable Recovery of Block Sparse Signals by Block Orthogonal Matching Pursuit
In this paper, we use the block orthogonal matching pursuit (BOMP) algorithm to recover block sparse signals x from measurements y = Ax+v, where v is a l2 bounded noise vector (i.e., ‖v‖2 ≤ ǫ for some constant ǫ). We investigate some sufficient conditions based on the block restricted isometry property (block-RIP) for exact (when v = 0) and stable (when v 6= 0) recovery of block sparse signals ...
متن کاملA sharp recovery condition for sparse signals with partial support information via orthogonal matching pursuit
This paper considers the exact recovery of k-sparse signals in the noiseless setting and support recovery in the noisy case when some prior information on the support of the signals is available. This prior support consists of two parts. One part is a subset of the true support and another part is outside of the true support. For k-sparse signals x with the prior support which is composed of g ...
متن کاملGroup Polytope Faces Pursuit for Recovery of Block-Sparse Signals
Polytope Faces Pursuit is an algorithm that solves the standard sparse recovery problem. In this paper, we consider the case of block structured sparsity, and propose a novel algorithm based on the Polytope Faces Pursuit which incorporates this prior knowledge. The so-called Group Polytope Faces Pursuit is a greedy algorithm that adds one group of dictionary atoms at a time and adopts a path fo...
متن کاملOrthogonal Matching Pursuit for Sparse Signal Recovery
We consider the orthogonal matching pursuit (OMP) algorithm for the recovery of a high-dimensional sparse signal based on a small number of noisy linear measurements. OMP is an iterative greedy algorithm that selects at each step the column which is most correlated with the current residuals. In this paper, we present a fully data driven OMP algorithm with explicit stopping rules. It is shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Mathematics
سال: 2017
ISSN: 1674-7283,1869-1862
DOI: 10.1007/s11425-016-0448-7